Highest vectors of representations (total 5) ; the vectors are over the primal subalgebra. | \(-h_{3}+2h_{2}+h_{1}\) | \(g_{3}\) | \(g_{5}+g_{1}\) | \(g_{4}\) | \(g_{6}\) |
weight | \(0\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(4\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(2\omega_{1}-8\psi\) | \(2\omega_{1}\) | \(2\omega_{1}+8\psi\) | \(4\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0) | \(\displaystyle V_{2\omega_{1}-8\psi} \) → (2, -8) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0) | \(\displaystyle V_{2\omega_{1}+8\psi} \) → (2, 8) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0) | ||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | ||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
| Semisimple subalgebra component.
|
|
| ||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | ||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(2\omega_{1}-8\psi\) \(-8\psi\) \(-2\omega_{1}-8\psi\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}+8\psi\) \(8\psi\) \(-2\omega_{1}+8\psi\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | ||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}-8\psi}\oplus M_{-8\psi}\oplus M_{-2\omega_{1}-8\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+8\psi}\oplus M_{8\psi}\oplus M_{-2\omega_{1}+8\psi}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | ||||||||||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}-8\psi}\oplus M_{-8\psi}\oplus M_{-2\omega_{1}-8\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+8\psi}\oplus M_{8\psi}\oplus M_{-2\omega_{1}+8\psi}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) |